
Image compression using 
wavelets and JPEG2000: 
a tutorial 
by S. Lawson and J. Zhu 

The demand for higher and higher quality images transmitted quickly over the 
Internet has led to  a strong need to develop better algorithms for the filtering and 
coding of such images. The introduction of the JPEGZOOO compression standard has 
meant that for the first time the discrete wavelet transform (DWT) is  to be used for 
the decomposition and reconstruction of images together with an efficient coding 
scheme. The use of wavelets implies the use of subband coding in which the image is 
iteratively decomposed into high- and low-frequency bands. Thus there is a need for 
filter pairs a t  both the analysis and synthesis stages. This paper aims in tutorial form 
to  introduce the DWT, t o  illustrate i t s  link with filters and filterbanks and to  illustrate 
how it  may be used as part of an image coding algorithm. It concludes with a look a t  
the qualitative differences between images coded using JPEGZOOO and those coded 
using the existing JPEG standard. 

1 Introduction 

In the 7 years.since the publication in this journal of a 
paper on wavelets by Bentley and McDonnell', there have 
been many developments in the area of wavelets, 
particularly in their applications. This paper presents a 
tutorial on the discrete wavelet transform (DWT) and 
introduces its application to the new JPEG2000* image 
compression standard. 

We start by showing how, from a one-dimensional low- 
pass and high-pass filter pair, a two-dimensional transform 
can be developed that turns out to be a discrete wavelet 
transform. The article will look at  how the four subbands 
generated by the DWT can be interpreted and will review 
the various ways of processing the image data at each 
stage of the transform. The next topic will be the use of 
compression algorithms that act on the DWI' output (the 
'wavelet coefficients'), e.g. SPIHT, EZW and EBCOT. The 
discussion will look particularly at the EZW algorithm and 
its essential features. Examples will be given showing the 
effects of decomposition, quantisation, coding and then 
reconstruction of images. Section 6 looks at the emerging 
international standard JPEG2000 and how it improves 
compression quality when compared with JPEG. 

Bentley and McDonnell's paper discussed both 
continuous and discrete wavelets. There are applications 
for which continuous wavelets are the natural choice, e.g. 
in sonar or radar signal detection where we need 
*A new image compression standard from the ITU's Joint 
Photographic Experts Group commiltee. See http.//wwwjpeg.org 

information about range'. Here, however, we will only 
discuss discrete wavelets. 

Our journey will begin with filters, in particular with a 
pair of finite-impulse response (FIR) filters, for with these 
we can construct a module that may be used any number 
of times to construct a filterbank. 

Filterbanks were first introduced over 25 years ago for 
speech analysis and synthesis applications. However the 
concept goes back further than that. A discrete Fourier 
transform can also be viewed as a filterbank and 
interpreted as a bank of bandpass filters tuned to different 
frequency bands. Unfortunately its frequency selectivity 
is poor for a given number of points. 

We are interested in filterbanks because of their 
application to subband coding, in which a signal is 
decomposed into frequency subbands. This allows us to 
perform ddferent signal processing tasks on each 
subband, e.g. different quantisation strategies. 

2 1-D FIR filter design 

The choice of FIR (nnn-recursive) filters for the 
construction of filterbanks is appropriate for several 
reasons. Of these, the ability to realise an exact linear 
phase response is important because many applications, 
including image compression, require phase distortion to 
be reduced. In addition, FIR filters are always stable. 
There are some disadvantages in using FIR filters; for 
example, the filter orders are generally higher than those 
of IIR (in6nite impulse response, recursive) filters 
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meeting the same specification. However the industry 
uses these structures, so that they have become the 
standard. Furthermore, their physical structure is simple 
and well understood and it is arguably easier to develop 
VLSI hardware architectures for FIR filters if required3. 

The transfer function of a general Nth order FIR filter, 
C(z) ,  is given by: 

where z = exp(iwl) and &, gl, ....& are the filter 
coefficients. For a linear phase response, g, = g.+, for 
i = O ,  1, ..., N/2,SothedesignprohIemistofindthevalues 
of the coefficients that will yield a filter that meets an 
appropriate specification. Many techniques are available 
and optimisation tends to he used most to design the 
filters in filterbanks. 

3 I -D filter banks and subband coding 

When two FIR filters are combined with decimators in the 
structure shown in Fig. 1, we have what is known as a two- 
channel analysis filter hank. To complement it, a synthesis 
filter hank is constructed with the aim that their cascade 
will yield at the output agood estimate of the original input 
signal. The analysis filterhank splits the signal into two 
equal frequency hands so that the filters H(z) and G(z) are 
lowpass and highpass, respectively*. After filtering, the 
signal's sampling frequency is too high and so half the 
samples can be discarded. The symbol 1 2  used in Fig. 1 
means decimation by 2, i.e. discarding every other 
sample. At this stage the amount of data at the two outputs 
is still equal to the amount of input data. As we will see, it 
is the partitioning of the signal into frequency hands that 
allows us to make savings in terms of coded data. The 
synthesis filter hank reconstructs the signal from the two 
filtered and decimated signals (Fig. 2). This involves 
expanding the signals in each branch by 2 (denoted by 
t2) and filteringl. The expansion or interpolation is 
achieved by inserting zeros between successive samples. 

The theory of filterhanks tells us that there are three 
principal errors, namely aliasing error, magnitude and 
phase distortion. Perfect reconstruction (PR) is achieved 
when we eliminate all three errors. The search for the 
right kind of filters to be used in filterbanks has led to 
'We use the terminology H(z) and G(z) to represent the transfer 
funcoons of the low- and high-pass filters, respectively, in agreement 
with many authors of texts on wavelets 

Fig. 1 Two-channel analysis filterbank 

Fig. 2 Two-channel synthesis filterbank 

many different filter classes. Amongst these are the 
orthogonal filters, so called because of an orthogonal 
relationship between the coefficients of the two filters. 
However an orthogonal filter can not have linear phase, 
except in the case of the simple Haar filter set5. Linear 
phase is an important requirement for image coding 
applications. A second class, biorthogonal filters, gives 
linear phase and in certain cases the coefficients 
offilters almost satisfy the orthogonality relationship. 
Orthogonality is an important property of functions 
(filters) used to analyse a signal. Fourier analysis, for 
example, uses sine and cosine functions that are known to 
be mutually orthogonal. As an example, the filter 
coefficients of the hiorthogonal 9/7 filter pairs* used for 
the analysis and synthesis filters are shown in Table 1. 
There is a relationship between analysis and synthesis 
filters that stems from the PR requirement. The frequency 
T h e  term 9/7 refers to the number of filter coefficients used, 
respectively, in X(z) and G(4. 

Table l:&Coefficients of the biorthogonal917 filter set where the transfer functions are 
H ( Z ) = ~ ~ = . ~  h i " .  G ( Z ) = ~ : _ ~  9s.". SO=c",,, x.,z* and R ( Z ) = ~ : ~  Isn 

Analysis filters Synthesis filters 

n Lowpass, h, Highpass, g. Lowpass, s, Highpass, r, 
0 0.8527 0.7885 0.7885 0-8527 
fl 0.3774 
t2 -0.1106 
*3 -0-0238 

-0.4181 
4.0407 
0.0645 

0.4181 
4.0407 
4-0645 

-0.3774 
-0.1 106 
0-0238 

54 0.0378 0.0378 
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responses of the analysis filters are shown in Fig. 3. 
The two-channel bank can be used as a building block 

to create different topologies, known as tree structures. 
By this means we can decompose an input signal into any 
desired number of bands with particular emphasis on one 
or a group of subbands. Fig. 4 shows the arrangement for 
a four channel uniform bank. The input signal, z(k) ,  is 
sampled at ratef,. The four output signal--u(k), u(k) ,  
w(k),  y(k)-are each sampled atf/4 and each occupies 
about one quarter of the input signal's bandwidth. In Fig. 
5, the decomposition of a signal is non-uniform: only the 

functions in 2 variables, i.e. B(a,  22) where z, and zz relate, 
in the case of images, to the two spatial dimensions. The 
mathematics for two-variable polynomials is much more 
difficult than for one; for example, factorisation is not 
possible in general. However the problem can be 
simplified by allowing separable transfer functions, i.e. 
B(z,, a) = Bl(zJBz(zz). This eases computation too, but 
restricts the range of filter responses. This is the solution 
often taken and one that we will adopt here. For a 2-D 
signal, we will use the notationn(m, n), where m and n are 
the two spatial directions. The 2-D separable analysis 

sampling rate: 1, 

lowpass band is split into 
subbands. Here, the input signal 
is again sampled at rateL but the 
outputs have different band- 
widths and sample rates. The 
bandwidth ofy(k) is about twice 
that of w(k) ,  which in turn is 
abouthvicethatofu(k) andu(k). 
This type of tree is known as an 
octave decomposition and is 
also the same as the discrete 
wavelet transform @wT). 
However the DWT is more 
general as the filters H(z) ,  G(z) 
are selectable from a large 
range of FIR and IIR types5. The 
wavelet decomposition itself can 
be generalised, leading to many 
different structures. Space does 
not permit discussion here. 

4 2-D filterbanks and 
subband coding 

2-D filters have transfer 

" ( k )  

filterbank has essentially four 
stages, filtering and decimation 
along the rows and then along 
the columns. Fig. 6 illustrates 
these stages by considering an 
image as an M x Narray of pixel 
values called X and charting its 
progress through the filter 
bank. At point A in Fig. 6, we 
have X = {z,; i = 1,2,3 ,... M, 
j = 1,2,3 ,... N). The filter G(zJ 
operates on each row of X to 
produce a new array Y = {yv: 
i = 1,2,3 ,... M ,  j = 1.2,3 ,... AI at 
point B. Decimation will delete 
every other column to produce 
at C ,  Y = {y,; i = 1,2,3 ,... M ,  j = 

1,3,5 ,... M. This matrix is then 
filtered by columns with G(zd 
and at D we have Z = lz,,: i = 
1,2,3 ,... M , j =  1,3,5 ,_.. N ) .  Finally 
the filtered output is decimated 
bv deleting everv other row to I 

Fig. 4 Four-channel analysis filter bank. f, is the sampling rate. finally produce at E, Z' = kij: i = 
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sampling rate: 1, 

y(k) 

Fig. 5 Three-scale analysis filter bank (wavelet). f, is the sampling rate. 

L3.5 ,... M ,  j = 1,3,5 ,__. M. If, for example, the input image 
has dimensions of 512 x 512 pixels then each of the four 
outputs in Fig. 6 will have dimensions of 256 x 256 pixels. 

One level of decomposition as defined by Fig. 6 is not 
very helpful and we can develop many different tree 
structures as was done in the 1-D case. In the case of the 
octave or wavelet decomposition, after three such levels 
or scales, the number of suhbands has reached 10 
(Fig. 7). The wavelet transform is an example of a 
timescale transform rather than the time-frequency 
transform associated with 
the Fourier transform. 

The processing along 
rows and columns does lead 
to problems at the image 
edges. Filtering a row, for 
example, involves the data in 
the row being convolved 
with the filter coefficients. 
Unlike conventional filtering 
where the data is a 
continuous stream of 
samples, the row length is 
fixed. The solution to this 
problem is to periodically 
extend the image. The 
number of samples after 
filtering will be greater than 
the row length so truncation 
together with an appropriate 
time shift will be necessary 
(Fig. 8 4 .  Unfortunately, as 
the value ofr(N) can be very 
different from that of z(l), 

problem, the image should be extended in a symmetric 
way Fig. 86). This ensures that there is a smoother 
transition between sample values at the image boundaries. 
Two other types of symmetric extension are possible and 
their uses are explained in a recent paper by Li6. 

It is also possible to avoid the need for periodic 
extension of any kind by storing the filters' states for each 
row and column. This is especially useful if IIR filters are 
used, where symmetric expansion is not possible. The 
drawback of course is the additional amount of data 

' filler and decimate along rows I filter and decimate along columns I 

LH 

LL 

edge artefacts may be 
introduced. To alleviate this Fig. 6 2-0 separable analysis filter bank 
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Fig. 7 3-scale wavelet subband decomposition. The 
letters denote whether lowpass (L) or highpass (H) filters 
were used in row and column filtering and the numbers 
denote the scale. Thus LH2 means the LH output 
according to Fig. 6 at scale 2. 

required that would need to be coded for transmission 
purposes’. 

The discussion so far has concentrated on the analysis 
filter bank. The equivalent synthesis bank is illustrated in 
Fig. 9. For perfect reconstruction, there will be a 
relationship between the synthesis filters R(z), S(z) and 
those in the analysis bank. 

5 Image compression and coding 

The previous discussion has show how we can take an 
image and split it into subbands using a wavelet 

row or Column periodic extension + - -  t 

.......................... .......................... 1 2  N 1 2  N 

Fig. 8 (a) Periodic 
expansion of row or 
column of an image; (b) 
symmetric expansion of 
row or column of an 
image 

............ M 2 1  

decomposition. The wavelet decomposition is useful 
because with many images most of the energy lies in the 
low-frequency subbaud, although there is still some 
correlation between bands. This can be appreciated by 
looking at Figs. 10 and 11, which show an original image 
and the decomposed image using 3 scales, the latter 
having been brightened in order to see the higb- 
frequency bands. We are predominantly interested here 
in compressing natural images. As a consequence if there 
is little energy in a specific location of a low-frequency 
band, such as Hb, then it is likely that the energy in a 
high-frequency band, such as HL or HL], at the same 
spatial location, will also be small. We can use this 
property to develop a hierarchical tree that starts at a 
coefficient in any subband except H b ,  LH, or HH,, which 
we call the root, and branches to the same spatial locations 
in other higher frequency subbands, called descendants. 
In particular we are interested in zero roots, since this will 
allow us to radically reduce the amount of data that needs 
to be transmitted. Fig. 12 illustrates this by showing 
several trees starting from different roots, indicated by 
circles. As we move through the subbands, the number of 
descendants increases by a factor of 4 in each subband. 

The amount of data after performing a 3-scale wavelet 
decomposition is still the same as that contained in the 
original image. However we are now in a position to look 
at the quantisation and coding of this output data (wavelet 
coefficients). A typical wavelet transform-based image 
coding system is illustrated in Fig. 13. A wavelet 
transform using a desired number of scales is applied to 
the image pixels. The wavelet coefficients (transform 
output) are organised in a certain way, quantised and 
entropy encoded, resulting in a bit stream. For decoding, 
the reverse is done. The encoded bit skeam is entropy 
decoded and inverse qnantisation is carried nut to recover 
the wavelet coefficients, organised in the same way as for 

row or Column Symmetric extension 
4 - -  t 

.......................... .......................... 1 2  N N  2 1  

1 
samples required to cal ulate output 

a 
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I expand and filter along columns I expand and filter along rows I 
HH 

HL 
- ~ - - 

LH --t 72 - 
LL 

Fig. 9 2-D separable 
synthesis filter bank. 

I 

encoding. Then the coefficients are inverse-transformed 
to reconstruct the image pixels. The process described 
results in losses and so is called lossy coding or lossy 
compression. The difference between the original and 
recovered images is measured and known as the PSNR 
(peak-signal-to-noise ratio). For an M x N image, it is 
defined as follows: 

(2) 

where P is the maximum value for a pixel, i.e. 255 for &bit 
precision, and z(m, n), y(m, n) are, respectively, the 
original and recovered pixel values at the mth row and nth 
column. PSNR is normally quoted in decibels. We are 
often interested in the way that PSNR varies with 
compression rate, measured in bits/pixel (bpp), 
producingwhat is known as a rate-distortion curve. Some 
applications, such as medical imaging, require that any 
compression is lossless. 

Various techniques have been developed to perform 
the quantisation and coding given that the data has been 
transformed by the DWT. The first of these was the 
embedded zerotree wavelet ( E m  coding method*, 
which was improved by Said and Pearlman in their SPIHT 
(set partitioning in hierarchical trees) algorithm9, and 
more recently by the embedded block coding with 
optimised truncation (EBCOT) techniquelo. All of these 
techniques exploit the correlation between neighbouring 
coefficients and/or inter-subband correlation, and use bit- 
plane coding, from the most significant bits (MSB) to the 
least significant bits (LSB) (Fig. 14). In addition, these 
encoding algorithms are iterative in the sense that after an 
initial transmission of encoded bits, further refinement 
bits can be generated, encoded and transmitted. The 
refinement can continue until the desired compression 
rate has been reached. 

MNP 
~ s ”  = c“’ I 

y(m, 4 - X h ,  n)l2 
m-0 

Fig. 10 The standard 512 x 512 x 8 Lena image 

To understand the governing the Fig. 11 
image, The high-frequency subbands have been 
brightened so a5 to see them. 

The result of applying a )-scale DWT to the Lena 
algorithm and its derivatives, it is helpful to look at the 
development of a significance map. This map contains 
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Fig. 12 Hierarchical trees for EZW and derivatives. 
Circles represent roots, and each small square represents 
a group of four adjacent wavelet coefficients. 

image transfarm quantlsation 

Fig. 13 Typical wavelet transform-based image coding 
system 

t bit 

/ / A  

J 
veltical 

Fig. 14 Bit planes of wavelet coefficients 

information about wavelet coefficients and their 
relationships across subbands. If we begin with 
coefficients in the coarsest scale, e.g. LL? in the 3-scale 
example of Fig. 7, then we may build a tree by noting that 
a coefficient will have descendants at finer scales with the 
same spatial location (Fig. 12). We can go further by 
considering coefficients that are insignifcant with respect 
to some threshold value, T, i.e. that are smaller in 
magnitude than T. In addition we hypothesise that all 
their descendants will also be insignificant. For natural 
images, this is a reasonable assumption (see Fig. 11). So 
part of the coding algorithm is the identXcation of 
zerotrees. Each zerotree begins at a root coefficient that 
is insignificant and is not itself a descendant. These 
zerotrees allow a large reduction in the amount of data to 
be transmitted since, by knowing the position of the root, 
we can discover all of its descendants8. 

In addition to finding zerotrees, the EZW algorithm uses 
successive approximation based on the threshold T. By 
scanning through the wavelet coefficients in a certain way 
(Fig. 15) it is possible to encode the data efficiently. The 
scanning procedure also ensures that coefficents are 
processed before their descendants. The algorithm 
repeatedly scans the data with a reducing threshold value, z, such that = T,,/2 and To = 2""gzhJ, where k is the 
largest wavelet coefficient in magnitude and Lzl denotes 
the largest integer less than or equal to z. Each scan has 
two passes, known as dominant and subordinate, and 
corresponding lists. The dominant list keeps a note of the 
co-ordinates of those coefficients that have not yet been 
found significant whilst the subordinate list stores the 
magnitudes of significant coefficients. Ultimately, the 
algorithm produces a stream of symbols chosen from the 
alphabet ofTable 2. The final part of the encoding process 
is to apply entropy coding to the symbol stream to produce 
a bit stream that may then be transmitted and/or stored. 

The EZW algorithm can be used iteratively until a 
desired compression rate has been reached. In addition a 
transmitted image can be recovered with reduced quality 
even if the decoding process is terminated before all the 
received data has been processed because later bits only 
refine the image. For these reasons EZW is known as an 
embedded algorithm. 

Although EZW and its derivatives outperform 
compression using subband coding and the discrete 
cosine transform(DCT), embedded coding does have 
some disadvantages, such as sensitivity to bit errors 
caused by noisy communication channels. Of the two well 
known developments of E m ,  SPIHT achieves improved 
performance even without entropy coding? This is 
accomplished by coding the significance map in a more 
efficient way using a partitioning algorithm that works on 
the sets of coefficients organised in hierarchical trees. We 
will use the SPIHT algorithm in the following example. 

Recalling that the original 512 x 512 x 8 bit Lena image 
is shown in Fig. 10, Fig. 16a shows the reconstructed 
imageat l.ObppwithPSNR=40.41dBandFig. 16bshows 
the reconstructed image at O.2bpp with PSNR= 33.15dB. 

.The differences between Fig. 16a and the original image 
are small and Fig. 166 retains the details of Lena very well. 
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Without entropy coding the performance is still good, as 
the ratdistortion curve in Fig. 17 shows, where the 
difference is less than 0.5dB. 

Compared with the block-based JPEG image coding 
standard, which uses the discrete cosine transform, image 
coding schemes using the wavelet transform have better 
objective performance, and have fewer block artefacts. 

For lossless compression, an integer wavelet transform 
can be defined that produces integer coefficients if the 
image is represented by an integer array. This process 
avoids quantisation. Such a transform is reversible so that 
the original image can be completely recovered". 
Compression rates will be lower than for lossy 
compression systems such as the one described earlier. 

6 JPEGZOOO 

The existing JPEG standard has been with us for some 
years now but the high quality and size of modern digital 
images have required a change. That change is embodied 
in JPEG2000 Part 1. The new standard serves the 
following applications: Internet, colour facsimile, printing, 
scanning, digital photography, medical imaging, mobile 
communications, remote sensing and ecommerce'". A 
block diagram of the JPEG2000 system, showing the 
features relevant to the discussion in this paper, is shown 
in Fig. 13. 

The key characteristics required in the new standard 
that relate directly to wavelet decomposition are as follows: 

better image quality than provided by the existing 
JPEG standard at compression rates of less than 
025 bpp. This should be achieved without performance 
degradation in other parts of the rate-distortion curve. 
lossless and lossy compression. 

Before any wavelet decom position is performed, the 
image is partitioned into non-overlapping tiles. These tiles 
are of equal size except possibly for those adjacent to the 

I a 

Fig. 15 Subband scanning order to ensure that a 
coefficient is processed before any of its descendants 

Table 2 Symbol alphabet for the EZW algorithm 

[Symbol Meaninq 1 
ZTR Coefficient and all of its descendants are 

insignificant relative to the current threshold. 
Coefficient is insignificant relative to the current 
threshold but one or more of its descendants 
are not. 
Coefficient is significant, i.e. greater than 5, and 
positive relative to the current threshold. 
Coefficient is significant and negative relative to 
the current threshold. 

I2 

POS 

NEG 

image boundary. Although tiling reduces PSNR for a 
given compression rate, this disadvantage is balanced by 
reduced memory and computational requirements as well 
as allowing selective encoding and decoding. 

- 
Fig. 16 Lena image coded with the SPlHT algorithm: (a) reconstructed image for coding at 1 bit per pixel, 
PSNR = 40.41dB; (b) reconstructed image for coding a t  O.2bits per pixel, PSNR = 33.15dB 
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Fig. 17 Rate-distortion curve for Lena coded using SPIHT, with and without 
entropy coding 

JPEG2000 has been shown to 
outperform all existing standards 
by around 2dB for compression 
ratios between 025 and 2bpp. In 
Fig. 18, using freely available 
software from the WebI3J4, we 
have compared lossy compres- 
sion rates for JPEG2000 with 
those for the existing JPEG 
standard and have confirmed this 
observation for the Lena image. 
In addition, Fig. 19 shows quali- 
tatively the difference in quality of 
the reconstructed image for a 
compression rate of 0.lMbpp. 
Although all of these results are for 
the k~ image, other experiments 
have confinned the superiority of 
JPEG2OLW. 

Finally it is interesting to note 
that the content-based video 
coding standard MPEG-4 has 
adopted the wavelet transform 
for static texture codingL6. 

7 Conclusions 

The DWT is applied to each tile using either the 
biorthogonal 9/7 filter set for lossy coding or an integer 
coefficient filter set for lossless codmg10,12. The wavelet 
coefficients are then quantised using one stepsize per 
subband. Enfi-opy coding is then performed. Various tests 
have been performed with standard natural images and the 
results compared with existing coding systems. Lossy 

In this short article we have aimed to show how filters are 
used as the basis for certain classes of wavelet decom- 
position methods used in modern image compression 
systems. We have briefly discussed these image com- 
pression methods and those elements of JPEG2000 that 
relate directly to the wavelet transform. At the time of 
writing some hardware and software oroducts have been 

40 

36 

26 I I I I I I 1 I I I 
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2-0 

compression rate, biVpixel 

Fig. 18 Rate-distortion curve giving comparison between JPEG and JPEG2OOO for 
the Lena image 

announced that meet the 
JPEG2000 Part 1 standard. Part 2 
of the standard will use different 
quantisation strategies, allow 
user-defined wavelets, etc., whilst 
Part 3 will allow coding of motion 
for situations where, for example, 
both still and motion pictures are 
coded using the same hardware, 
e.g. in a digital camera. 
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